AIoT объединяет в себе возможности IIoT и искусственного интеллекта. Идея заключается в том, чтобы не просто собирать данные с помощью датчиков, но и анализировать их в режиме реального времени с помощью алгоритмов машинного обучения. Это позволяет не только выявлять проблемы, но и предсказывать их возникновение. Проще говоря, это умный промышленный интернет. Например, система AIoT может заранее предупредить о возможном выходе из строя оборудования, основываясь на данных о его работе и предыдущих отказах.
Рынок AIoT демонстрирует значительный рост, и прогнозируется его дальнейшее быстрое расширение в ближайшие годы. В 2024 году ожидается, что рынок AIoT достигнет примерно 9,98 миллиардов долларов США с прогнозируемым среднегодовым темпом роста (CAGR) в 32,7%. К 2028 году этот показатель может вырасти до 31,05 миллиардов долларов США. Для сравнения, рынок IoT значительно больше, но растет он несколько медленнее. В 2024 году объем рынка IoT прогнозируется на уровне около 714,48 миллиардов долларов США, и к 2032 году он может достигнуть 4 062,34 миллиардов с CAGR в 24,3%. IIoT также демонстрирует значительный рост, стимулируемый развитием производственных технологий, здравоохранения и умных городов, с прогнозируемым CAGR более 23% в период с 2024 по 2030 годы.
Таким образом, несмотря на то что рынок AIoT в абсолютных показателях меньше по сравнению с общим рынком IoT, он расширяется более быстрыми темпами благодаря синергетическим преимуществам, которые приносит объединение AI и IoT-технологий.
На заводах Bosch с помощью AIoT научились отслеживать неэффективные производственные процессы и оптимизировать их в режиме реального времени. Это позволило на 30% снизить время производства и повысить гибкость производственных процессов. AIoT помогает улучшать логистику, управление запасами и даже прогнозировать спрос на продукцию. В медицине AIoT позволяет создавать умные системы мониторинга состояния пациентов, предсказывая возможные осложнения и своевременно предупреждая врачей.
Одним из наиболее ожидаемых результатов от ИИ применительно к техническим системам является умение прогнозировать сроки профилактических ремонтов. Например, в условиях реального цеха управление логистикой требует применения высоконадежных алгоритмов. Такие алгоритмы зависят от множества факторов – динамически меняющихся производственных планов, оперативной обстановки на маршрутах перемещения физических объектов, требований техники безопасности и других параметров. Особо важно, что некоторые факторы напрямую связаны с задачами ИИ, такими как распознавание образов, голосовое управление и предотвращение столкновений.
Судя по публикациям и отчетам таких крупных холдингов, как Siemens, Volkswagen, General Electric – наиболее часто решаемые задачи, где AIoT действительно может принести значительные выгоды в производственной сфере это:
- Предиктивный сервис по техническому состоянию оборудования: AIoT-системы позволяют заблаговременно планировать профилактические ремонты, что обеспечивает долговечность и надежность работы оборудования.
- Оптимизация логистики: Управление перемещением объектов в производственных цехах, будь то инструменты или крупные механизмы, становится более эффективным благодаря AIoT. Такие системы используют данные с датчиков, видеокамер и других устройств для оптимизации маршрутов и предотвращения столкновений.
- Контроль качества: AIoT-системы могут отслеживать динамические параметры, такие как температура, вибрация и электрические характеристики, что позволяет мгновенно реагировать на отклонения от норм и повышает качество продукции.
- Управление запасами: AIoT помогает предприятиям в управлении запасами, прогнозируя потребности в материалах и инструментах, что позволяет минимизировать издержки и избежать дефицита.
Цифровые двойники: AIoT-технологии позволяют создавать цифровые двойники производственного оборудования и процессов, что дает возможность моделировать и оптимизировать их работу без риска для реальных систем.